Forecasting bus ridership with trip planner usage data

a machine learning application

Jop van Roosmalen

Acknowledgement:
Dr. Chintan Amrit (UTwente)
Dr. Engin Topan (UTwente)
Dr. Niels van Oort (Smart Public Transport Lab)
9292 Trip planner

Waar wil je heen?

Locaties
- Gouda
- Hallenweg 17, Enschede

Datum
- 28-03-2019

Tijd
- 15:45

Type reis
- Vertrek

Plan mijn reis →

Vertrek: Spoor 3
Station Gouda
- NS intercity
 Richting Enschede

15:05
Aankomst: Spoor 3
Station Hengelo

15:08
Aankomst
Bushalte Centraal Station, Hengelo

15:11
Vertrek, Perron A1
Introduction

Objective

• Construct a forecasting model
• Determine the accuracy of the models
• Investigate predictive power of trip planner usage data
• Determine valuable features
Methodology

Models

- $Passenger_{stop} = Passenger_{stop-1} + Boarding_{stop} - Alighting_{stop} = \sum_{i=0}^{s} B_i - \sum_{i=0}^{s} A_i$

Machine learning

- Multiple linear regression
- Decision tree - decision tree regressor
- **Random forests**
- Support vector regression with radial basis kernel
- Artificial Neural Networks - Multi-layer Perceptron regressor

Comparison with simple rules

1. Predicted number equals number last week
2. Predicted number equals historical average
Methodology
Undersampling using stratified K-fold

Stratified k-fold
Under sampling of training data

Classes

k=1

k=2

k=..

k=10

Nonzero Zero Neglected Test Train
Methodology

Performance metrics

• $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$

• $R^2 = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2}$

• % of passenger count predictions correct
• % of maximum passenger count predictions correct

• Python, Scikit-learn
Case study

Scope

• Data from Groningen and Drenthe
• 4,972 km² Land area
• ± 1.1 mil Habitants
• ± 0.2 mil Habitants
Groningen City
• January to March 2017
• Time period contains two smaller holidays
Data Structure

Trip planner
11,694,849

Smart card
6,814,907
4,946 stops

AVL data
11,447,562

All on vehicle level
Data
Merging trip planner with bus data

• 6 – dimensional problem
• Almost no exact matches!

Metric:

\[\text{Difference boarding times} + \text{difference alighting times} \]
Data

Exploratory data analysis
Data

Exploratory data analysis
Data

Data selection

Forecasting demand for trips of line configuration g554-1-0 on workdays around 8 AM

1. 20 lines on workdays around 8 AM
 (56 line configurations, 4173 trips and 138,694 records)

2. 20 lines configurations for the total workday
 (83 line configuration, 51,471 trips and 1,523,115 records)

3. line configuration g554-1-0 for the total workday
 (1 line configuration, 2275 trips and 97,825 records)

4. line configuration g554-1-0 on workdays around 8 AM
 (1 line configuration, 239 trips and 10,277 records)
Data
Line configuration g554-1-0

• From Roden via P+R and Groningen central Station to Hospital
• 43 stops
• 631 m average stop spacing
• 26 km total route (partly own lane)
• 61 minutes from begin to end
• 6-2 busses an hour
Results

RMSE Passengers

<table>
<thead>
<tr>
<th></th>
<th>independent</th>
<th>independent</th>
<th>Heuris</th>
<th>Heuris</th>
<th>all-lines</th>
<th>Workday</th>
<th>g554-1-0</th>
<th>all-lines</th>
<th>Workday8AM</th>
<th>g554-1-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>DT</td>
<td>MLR</td>
<td>NN</td>
<td>RF</td>
<td>DT</td>
<td>MLR</td>
<td>NN</td>
<td>RF</td>
<td>SVR</td>
<td>DT</td>
</tr>
</tbody>
</table>

Legend:
- Red: Number of passengers
- Blue: Number of passengers from rounded inputs
Results
Passenger prediction example

• g554-1-0
• Trip 1018
• February 15, 2017
• Wednesday
• 07:22 – 08:26
Results

Percentage correct maximum passenger count predictions

1. Last week

2. Historical average

Random Forests
Discussion

Limitations

• One trip planner, no session id
• Only smart card
Conclusion
Research question

Can one forecast short-term ridership of buses using data containing the consulted travel advices from a widely used trip planner for public transport and what accuracy can one achieve in different scenarios?
Conclusion

Recommendations

Practice
- Adapt data structure for data analysis
 - Include bus trip number, line number, operation date and stop
 - Include session ID
 - Trip level
 - Use same set of stops
- Models

Research
- **Forecasting structure**
 - Features:
 - Which
 - Form
 - Scaling
 - Amount
 - Training data:
 - Size
 - Quality
 - Performance metric:
 - Average
 - Upper bound
 - Models:
 - Type
 - Complexity
 - Running time
 - Tuning
 (bias/flexible)

Forecasting performance

Training data: Size Quality

Models: Type Complexity Running time Tuning (bias/flexible)
Thanks for your attention

jop.j@hotmail.com
linkedin.com/in/jop-van-roosmalen/
Slides nielsvanooort.weblog.tudelft.nl
Thesis essay.utwente.nl/77590/