Impact of atypical events on transportation demand

Simon Lepage, Master student
Catherine Morency, full professor
Canada Research Chair on Personal Mobility, Polytechnique Montreal
Planning

1. Objectives
2. Literature review
3. Case study
4. Methods
5. Results
6. Limitations & conclusion
1. Objectives

- Understanding the impact of atypical events on transportation demand
- Understanding the role of each mode within a multimodal transport system, by comparing their response to various events
2. Literature review
Factors influencing short term travel demand

Meteorology:
- **Cyclists** are affected by weather from previous 3 hours
- **Public transport** is little affected by weather
- **Taxi** demand increases with rain, but the impact of snow is insignificant

Activities:
- During **traditional festivals** in Xi’an (China), subway demand increases by 19%

Subway service disruption:
- After a 10 minutes disruption, 34% of users look for an alternative mode
- 17% of users choose public transit as an alternative mode

Vancouver, Montréal (Gallop et al., 2012; Miranda-Moreno et Nosal, 2011)
Chicago, Pays-bas (Guo et al., 2007; Sabir, 2011; Stover et McCormack, 2012)
New York City (Kamga et al., 2013)
Xi’an, Chine (Tao et al., 2014)
Toronto (Lin, 2017)
3. Case study

- Study area: Montreal
- Modes: bikesharing, taxi, subway, bus
- Level: overall system
- Spatial aggregation: subway station surroundings (800m network distance)
- Period: working days from 2015 to 2017
3. Case study

• Study area: Montreal
• Modes: bikesharing, taxi, subway, bus
• Level: overall system
• Spatial aggregation: subway station surroundings (800m network distance)
• Period: working days from 2015 to 2017
3. Data

Data sources

<table>
<thead>
<tr>
<th>Data</th>
<th>Objects</th>
<th>Data collection</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcational data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bikesharing</td>
<td>16M transactions</td>
<td>continuous</td>
<td>Bixi (operator)</td>
</tr>
<tr>
<td>Taxi</td>
<td>11M rides</td>
<td>continuous</td>
<td>Taxi Diamond (25% of fleet)</td>
</tr>
<tr>
<td>Subway</td>
<td>747M smart card validations</td>
<td>continuous</td>
<td>Montreal Transport Authority</td>
</tr>
<tr>
<td>Bus</td>
<td>1,2B smart card validations</td>
<td>continuous</td>
<td>Montreal Transport Authority</td>
</tr>
<tr>
<td>Events data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>26K hourly data and 1,096 daily data</td>
<td>Hourly & daily</td>
<td>Environment Canada</td>
</tr>
<tr>
<td>Activities</td>
<td>1,772 activities near subway stations</td>
<td>Before activities</td>
<td>Montreal Transport Authority</td>
</tr>
<tr>
<td>Service disruptions</td>
<td>3,051 subway service disruptions</td>
<td>Continuous</td>
<td>Montreal Transport Authority</td>
</tr>
</tbody>
</table>
3. Data integration challenges

Different spatial contexts

Solution: Aggregate by subway station surrounding

Varying data collection interval (continuous, hourly, daily)

Solution: Aggregate data by hour

Demand is of a different order of magnitude for modes and stations

Solution: normalize demand by mode and station
4. Method

Objective: generalised additive model (GAM)

Methodology:
1. Demand normalization
2. Data fusion
3. Variable selection
4. Model calibration

\[i_{n, a, s} = \frac{d_{n, a, s}}{m_{a, s}} \]

\[m_{a, s} = \frac{1}{n_a} \sum_{h=1}^{n_a} d_{h, a, s} \]

\[i_{n, a, s} = \frac{d_{n, a, s}}{m_{a, s}} \]

\(h \): time period
\(a \): year
\(s \): subway station
\(n_a \): nb time periods

<table>
<thead>
<tr>
<th>timestamp</th>
<th>mode</th>
<th>station</th>
<th>departures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-04-27 16:00</td>
<td>bikesharing</td>
<td>Bonaventure</td>
<td>59</td>
</tr>
<tr>
<td>2015-04-27 16:00</td>
<td>bikesharing</td>
<td>Viau</td>
<td>2</td>
</tr>
<tr>
<td>2015-04-27 16:00</td>
<td>bikesharing</td>
<td>McGill</td>
<td>142</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>timestamp</th>
<th>mode</th>
<th>station</th>
<th>departures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-04-27 16:00</td>
<td>bikesharing</td>
<td>Bonaventure</td>
<td>1,02</td>
</tr>
<tr>
<td>2015-04-27 16:00</td>
<td>bikesharing</td>
<td>Viau</td>
<td>0,88</td>
</tr>
<tr>
<td>2015-04-27 16:00</td>
<td>bikesharing</td>
<td>McGill</td>
<td>1,08</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Model equation

\[
\ln(\text{intensity}) = \beta_0 + \beta_1 \text{rain} + \beta_2 \text{wind} + f_1(\text{temperature}) + f_2(\text{disrupt.}) + \sum_{i=1}^{10} \alpha_i \text{activity}_i + \sum_{i=1}^{7} \gamma_i \text{period}_i + \epsilon
\]
\[
\ln(\text{intensity}) = \beta_0 + \beta_1 \text{rain} + \beta_2 \text{wind} + f_1(\text{temperature}) + f_2(\text{disrupt.}) + \sum_{i=1}^{10} \alpha_i \text{activity}_i + \sum_{i=1}^{7} \gamma_i \text{perio}de_i + \epsilon
\]

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>0.443*</td>
</tr>
<tr>
<td>rain</td>
<td>-0.072*</td>
</tr>
<tr>
<td>wind</td>
<td>-0.001*</td>
</tr>
<tr>
<td>temperature</td>
<td>spline</td>
</tr>
<tr>
<td>disruption</td>
<td>spline</td>
</tr>
<tr>
<td>activities</td>
<td>-</td>
</tr>
<tr>
<td>6am</td>
<td>0.303*</td>
</tr>
<tr>
<td>7am</td>
<td>0.090*</td>
</tr>
<tr>
<td>8am</td>
<td>0.405*</td>
</tr>
<tr>
<td>9am</td>
<td>0.077*</td>
</tr>
<tr>
<td>10 – 11am</td>
<td>-0.101*</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

*Significant at a 95% level
\[\ln(\text{intensity}) = \beta_0 + \beta_1 \text{rain} + \beta_2 \text{wind} + f_1(\text{temperature}) + f_2(\text{disrupt.}) + \sum_{i=1}^{10} \alpha_i \text{activity}_i + \sum_{i=1}^{7} \gamma_i \text{period}_i + \epsilon \]
Temperature variable

Intensity variation with temperature

Intensity variation

Temperature (°C)

mode
- bike
- bus
- subway
- taxi
Subway service disruptions

\[
\ln(\text{intensity}) = \beta_0 + \beta_1 \text{rain} + \beta_2 \text{wind} + f_1(\text{temperature}) + f_2(\text{disrupt.}) + \sum_{i=1}^{10} \alpha_i \text{activity}_i + \sum_{i=1}^{7} \gamma_i \text{periode}_i + \epsilon
\]

Smoothing spline
Subway service disruptions

Intensity variation as a function of service disruption duration

![Intensity variation graph](image-url)
ln(intensity) = β₀ + β₁ rain + β₂ wind + f₁(temperature) + f₂(disrupt.) + ∑_{i=1}^{10} αᵢ activityᵢ + ∑_{i=1}^{7} γᵢ periodᵢ + ε

Activities

Intensity variation

Activity types

Mode
- bike
- bus
- subway
- taxi
Different models for every station
Rain variable

Intensity variation of bikesharing in the presence of rain (1 hour of rain)
6. Limitations

Data limitations:
• No unique id to follow users throughout all modes
• Unknown boarding location for bus
• Only the subway station where the disruption originates is known

Method limitations:
• Station neighborhood areas overlap so trips can be counted multiple times
• Availability of bicycles at bikesharing stations not considered
• Impact of events might differ according to season or time of day
6. Conclusion

Applications:
- Contribute to demand forecasting models
- Dynamic adjustment of supply according to demand

Perspectives:
- Analyse other modes of transportation
- Analyse arrivals
- Test other station neighborhood definitions
- Compare with time series models
Thanks!

Simon Lepage, Master student
Catherine Morency, full professor
Canada Research Chair on Personal Mobility, Polytechnique Montreal
References

