Roadway Traffic Flow Estimation using Video Imagery Data Collected from Transit Bus Cameras

Rabi G. Mishalani, Mark R. McCord, Benjamin Coifman, and Giovani Hansel

The Ohio State University

TransitData 2019 Workshop and Symposium

Paris, France
July 7-11, 2019
Objective

Develop and demonstrate an approach to estimate roadway traffic flows across extensive urban roadway networks using video imagery collected from transit buses.
Motivation

• Traditional roadway traffic studies typically involve observations at stationary locations
• A few locations are observed over fairly long time periods (hours or days)
Motivation, cont.

- Transit buses cover major areas (routes) in roadway network regularly
- Most are equipped with video cameras for security and liability purposes

Part of OSU Campus Area Bus Service (CABS) route map
Concept
Concept

• Take advantage of existing video imagery
• Take advantage of existing video imagery
• Estimate roadway traffic flow from repeated observations
Study Design

• Collect data
 – Video imagery (to estimate roadway traffic flows)
 – Road tube counts (“ground truth” to validate results)
• Extract vehicle locations and time-stamps from video imagery
• Modify moving observer method to estimate traffic flows from extracted vehicle data
• Apply modified method to estimate traffic flows
• Validate estimates
 – Qualitatively
 – Quantitatively
Data and Network

• Road tube counts
 – 24-hour 15-minute bidirectional traffic counts on 5 segments in Oct. 25, 2019
 – “Ground truth” (recognizing that counts are subject to measurement errors)
Data and Network

- **Road tube counts**
 - 24-hour 15-minute bidirectional traffic counts on 5 segments in Oct. 25, 2019
 - “Ground truth” (recognizing that counts are subject to measurement errors)

- **Video imagery**
 - Estimate roadway traffic flows
Video Imagery

- Video imagery used
 - Side-view camera
 - Down-sampled to 10 FPS
 - 12-hour footage on 5 buses between 7AM to 7PM on October 25, 2019
 - 1 CLN, 2 CLS, and 2 WC buses
 - Total of 60 video-hours

<table>
<thead>
<tr>
<th>Route</th>
<th>7AM - 11AM</th>
<th>11AM - 3PM</th>
<th>3PM - 7PM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLN</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>CLS</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>WC</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

Available (video-hours)

July 8, 2019

The Ohio State University
Extract Vehicle Information from Video Imagery

• Developed (in MATLAB) a video-based vehicle Counting GUI
• Semi-automatically identified and recorded vehicle locations and times using human processors
Extract Vehicle Information from Video Imagery

- Developed (in MATLAB) a video-based vehicle Counting GUI
- Semi-automatically identified and recorded vehicle locations and time-stamps using human processors
Extract Vehicle Information from Video Imagery

• Developed (in MATLAB) a video-based vehicle Counting GUI
• Semi-automatically identified and recorded vehicle locations and times using human processors
Traditional Moving Observer Traffic Flow Estimation Method

• Observer travels in both directions 1 and 2 of roadway segment during a homogeneous time period
• Count vehicles in opposite direction while traversing direction 1
Traditional Moving Observer Traffic Flow Estimation Method

- Observer travels in both directions 1 and 2 of roadway segment during a homogeneous time period
- Count vehicles in opposite direction while traversing direction 1

\[q = \frac{\text{dir.1} n_{veh} + \cdots}{t_1 + \cdots} \]
Traditional Moving Observer Traffic Flow Estimation Method

- Observer travels in both directions 1 and 2 of roadway segment during a homogeneous time period
- Count vehicles in opposite direction while traversing direction 1

\[q = \frac{\text{dir.1} \cdot \text{n.veh} + \ldots}{t_1 + \ldots} \]

- Count vehicles overtaking observer and being overtaken by observer in same direction while traversing direction 2
Traditional Moving Observer Traffic Flow Estimation Method

• Observer travels in both directions 1 and 2 of roadway segment during a homogeneous time period

• Count vehicles in opposite direction while traversing direction 1

\[
q = \frac{\text{dir.}1 n_{\text{veh}} + \ldots}{t_1 + \ldots}
\]

• Count vehicles overtaking observer and being overtaken by observer in same direction while traversing direction 2

\[
q = \frac{\text{dir.}1 n_{\text{veh}} + (\text{dir.}2 n_{\text{veh}}^{\text{overtaking}} - \text{dir.}2 n_{\text{veh}}^{\text{overtaken}})}{t_1 + t_2}
\]
Traditional Moving Observer Traffic Flow Estimation Method, cont.

• Limitations of traditional moving observer method
 - Impractical for observer to traverse both directions during a homogeneous time period
 - Inability to take advantage of transit buses that either do not traverse both directions or are not available to traverse direction 2 in a timely manner
 - Inability to observe traffic continuously between contiguous segment-directions

• Need to modify the method for one-directional observations to either resolve or negate these limitations
Modified Moving Observer Traffic Flow Estimation Method

• Traverse segment in one direction (1) only

• Assume travel time of virtual traversal in other direction (2)

• \(q = \frac{n^{veh}}{t_1 + t_2} \)

• \(t_2 = \frac{\text{Segment Length}}{\text{Speed Limit}} \)
Sources of Flow Estimation Error

• Occlusions in counting vehicles
 – Camera occluded by large-sized vehicles (buses, trucks, etc.)
 – Objects on medians (trees, bridge columns, etc.)
 – Raindrops on camera’s lense

• Counting vehicles near segment boundaries

• t_2 assumption
Validation: Qualitative Results

- Estimated flows on network correspond to expectations by
 - Time-of-day
 - Direction

Time of Day period boundaries:
- Morning: 7:30 – 10:00 AM
- Noon: 12:00 – 2:00 PM
- Afternoon: 2:00 – 4:00PM
Validation: Quantitative Results

- Comparing video-based flow estimates to road tube counts
- Summary Statistics on Differences and Rel. Differences between the two
- Considering 3 time-of-day periods x 10 segment-directions

<table>
<thead>
<tr>
<th>Differences [veh/hr] [1]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of Differences</td>
<td>23.34</td>
</tr>
<tr>
<td>Average of Abs. Difference</td>
<td>56.36</td>
</tr>
<tr>
<td>Std. Deviation of Differences</td>
<td>63.97</td>
</tr>
<tr>
<td>Std. Deviation of Abs. Differences</td>
<td>37.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Difference [2]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of Rel. Difference</td>
<td>0.10</td>
</tr>
<tr>
<td>Average of Absolute Rel. Difference</td>
<td>0.22</td>
</tr>
<tr>
<td>Std. Deviation of Rel. Difference</td>
<td>0.25</td>
</tr>
<tr>
<td>Std. Deviation of Absolute Rel. Difference</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Validation: Quantitative Results

- Comparing video-based flow estimates to road tube counts
- Summary Statistics on Differences and Rel. Differences between the two
- Considering 3 time-of-day periods x 10 segment-directions

<table>
<thead>
<tr>
<th>Differences [veh/hr] [1]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of Differences</td>
<td>23.34</td>
</tr>
<tr>
<td>Average of Abs. Difference</td>
<td>56.36</td>
</tr>
<tr>
<td>Std. Deviation of Differences</td>
<td>63.97</td>
</tr>
<tr>
<td>Std. Deviation of Abs. Differences</td>
<td>37.01</td>
</tr>
<tr>
<td>Relative Difference [2]</td>
<td></td>
</tr>
<tr>
<td>Average of Rel. Difference</td>
<td>0.10</td>
</tr>
<tr>
<td>Average of Absolute Rel. Difference</td>
<td>0.22</td>
</tr>
<tr>
<td>Std. Deviation of Rel. Difference</td>
<td>0.25</td>
</tr>
<tr>
<td>Std. Deviation of Absolute Rel. Difference</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Validation: Quantitative Results, cont.

• Analyzing the accuracy of video-based flow estimates

• Abs. $RD = \left| \frac{Video\ Avg.\ Flow - Tube\ Avg.\ Flow}{Tube\ Avg.\ Flow} \right|$

 $= \beta_0 + \beta_1 \log(CV) + \beta_2 No.\ of\ Passes$

Linear regression results

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.481719</td>
<td>0.070913</td>
<td>6.793</td>
<td>2.7E-07</td>
</tr>
<tr>
<td>Log(CV)</td>
<td>0.151637</td>
<td>0.65554</td>
<td>2.313</td>
<td>0.0286</td>
</tr>
<tr>
<td>Number of Passes</td>
<td>-0.013223</td>
<td>0.004896</td>
<td>-2.652</td>
<td>0.0132</td>
</tr>
</tbody>
</table>

$N = 30$, $R^2 = 0.321$
Validation: Quantitative Results, cont.

• Analyzing the variability of video-based flow estimates

• \(\log(CV) = \beta_0 + \beta_1 \text{Avg. Flow} + \beta_2 \text{Avg. Obs. Duration} \)

 \(+ \beta_3 I(\text{Noon}) + \beta_4 I(\text{Afternoon}) \)

Linear regression results

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.1098115</td>
<td>0.0883032</td>
<td>1.244</td>
<td>0.2161</td>
</tr>
<tr>
<td>Avg. Flow (veh/hr)</td>
<td>-0.0011544</td>
<td>0.0001525</td>
<td>-7.572</td>
<td>8.09E-12</td>
</tr>
<tr>
<td>Avg. Obs. Duration (min)</td>
<td>-0.0042786</td>
<td>0.0005254</td>
<td>-8.143</td>
<td>3.96E-13</td>
</tr>
<tr>
<td>Noon</td>
<td>-0.1323062</td>
<td>0.0740469</td>
<td>-1.787</td>
<td>0.0765</td>
</tr>
<tr>
<td>Afternoon</td>
<td>-0.0787282</td>
<td>0.0737663</td>
<td>-1.067</td>
<td>0.2880</td>
</tr>
</tbody>
</table>

N =30, \(R^2 = 0.458 \)
Validation: Aggregating Flow Estimates into VMT Results

• Vehicle-miles-traveled (VMT) estimates across 10 segment-directions

• Road tube counts-based VMT estimate = 9,125 veh-miles/12 hours

• Video-based VMT estimate = 9,765 veh-miles/12 hours

• Recognizing that video-based flow estimates and road tube-based counts are subject to measurement errors, the two VMT results are strikingly similar
Conclusion

• Flow estimates
 – Reasonable and consistent with expectation reflecting local knowledge
 – Video-based estimates are fairly close to “ground truth” counts

• Accuracy and variability of flow estimates
 – Coefficients of explanatory variables are mostly statistically significant
 – Signs of coefficients of explanatory variables consistent with prior expectations

• VMT estimates
 – Similar when using video-based flow estimates and tube counts
 – No data collection effort needed for video-based estimates
Future Research

• Improve traffic flow estimates
 – Develop refinements to video-based estimates
 – Further validate estimates

• Develop automatic extraction of vehicle location and time-stamp data from video imagery for operational applications

• Extend validation and demonstration to larger urban transit agencies

• Determine number of bus passes needed to achieve reliable flow estimates for different types of segments
• Contact information
 – Rabi Mishalani: mishalani@osu.edu
 – Mark McCord: mccord.2@osu.edu
 – Benjamin Coifman: coifman.1@osu.edu
 – Giovani Hansel: hansel.21@osu.edu

• Acknowledgements
 – OSU graduate students: Serkan Bicici, Mo Wu
 – OSU Transportation and Traffic Management: Beth Snoke, Tom Holman, Sean Roberts
 – Mid-Ohio Regional and Planning Commission (MORPC): Nick Gill, Zhoujun Jun, Hwashik Jang
 – US Department of Transportation, University Transportation Center Program

The Ohio State University
July 8, 2019