Route choice problem	Route choice strategies 0000	Data analysis 000	Route choice modeling	Conclusions
Observing	and understar	nding rou	te choice beha	aviour
of nublic t	rangnort nagg	angers fro	m smart card	data
	ransport pass			uata

Jacqueline Arriagada^{*a*}, Marcela Munizaga^{*a*}, Angelo Guevara^{*a*} and Carlo Prato^{*b*}

^{*a*} Universidad de Chile, ^{*b*} University of Queensland

July 9, 2019

Route choice problem	Route choice strategies	Data analysis 000	Route choice modeling	Conclusions

Route choice problem

Strategy : "A set of rules, when applied, allows the traveller to reach his or her destination" Spiess and Florian (1988)

Route choice problem	Route choice strategies •000	Data analysis 000	Route choice modeling	Conclusions

Simple strategy: "Take line blue to stop T; transfer to line red and exit at stop D"

	Waiting time [min]	Travel time [min]	Expected travel time [min]
O - 🛤 - T - 🛤 - D	12 + 6 = 18	6 + 10 = 16	34
O - 📰 - T - 🛤 - D	12 + 6 = 18	5.5 + 10 = 15.5	33.5
O - 📰 - T - 🛤 - D	12 + 6 = 18	5 + 10 = 15	33
O - 🛤 - D	6	25	31

Route choice problem	Route choice strategies $0 \bullet 00$	Data analysis 000	Route choice modeling	Conclusions

Aggregate strategy: "Take the next bus among lines orange, yellow and blue, exit at stop T; transfer to line red and exit at stop D"

	Waiting time [min]	Travel time [min]	Expected travel time [min]	
O- ***/***-T- ***-D	4 + 6 = 10	5.5 + 10 = 15.5	25.5	
0 - 🛤 - D	6	25	31	
$5.5 = \sum_{i \in CL} P(i) * t_i \qquad P(i) = \frac{f_i}{\sum_{j \in CL} f_j}$ Chiriqui and Robillard (1975); Raveau and Muñoz (2014)				

Route choice problem	Route choice strategies 0000	Data analysis 000	Route choice modeling 00000000	Conclusions

Hyperpath: set of path that minimize the total expected travel time (Spiess and Florian, 1988; Nguyen and Pallotino, 1998)

$$InitialWaitingTime = \frac{60}{25} = 2.4min$$
$$ExpectedTravelTime = 2.4 + \frac{5}{25} * 22 + \frac{5}{25} * 21.5 + \frac{5}{25} * 21 + \frac{10}{25} * 25$$
$$ExpectedTravelTime = 25.3$$

Route choice problem	Route choice strategies $000 \bullet$	Data analysis 000	Route choice modeling 00000000	Conclusions

- Simple strategy or elemental alternatives are used in RUM models
- Aggregate strategy was incorpored in a RUM by Raveau and Muñoz (2014)
- Hyperpath are widly used in Transit assignment models

Route choice problem	Route choice strategies 0000	Data analysis ●00	Route choice modeling 00000000	Conclusions
Data studio:	Santiago			

- Payment option: smart card
- 300 bus services, all of them in both directions
- 7 metro lines (more than 100 km)
- +11.000 bus stops
- 3 millon of passengers per week

Route choice problem	Route choice strategies	Data analysis 0●0	Route choice modeling 00000000	Conclusions

Common line analysis

Are people taking the first line or service that arrive to the stop?

Route choice problem	Route choice strategies 0000	Data analysis 00●	Route choice modeling 00000000	Conclusions

Common line analysis

Data analysis

Route choice modeling •0000000 Conclusions

Path size logit model

$$V_j = \sum_m \beta_m T I_m + \sum_c \beta_c T R_m + \beta_{CR} C R_j + \beta_{PS} P S_j$$

$$CR_{ls} = \frac{\sum_{e \in l} Occupancy_e}{\sum_{e \in l} Capacity_e}$$

$$CR_{js} = \frac{\sum_{s \in l} CR_{ls}}{L_j}$$

$$PS_j = \sum_{a \in j} \frac{l_a}{L_j} \ln \frac{1}{M_{an}}$$

Source: Bovy et al. (2009)

Path size logit model

	Elemental alte	rnatives	Aggregate alternatives	
Decemintion	Estimated	Rates of	Estimated	Rates of
Description	coefficient	$\operatorname{substitution}$	coefficient	substitution
$\beta_{BusTravelTime}$	-0.067 (-47.0)	1	-0.067 (-41.2)	1
$\beta_{MetroTravelTime}$	-0.068 (-35.9)	1.01	-0.073 (-34.8)	1.09
$\beta_{InitialWaitingTime}$	-0.099 (-83.4)	1.48	-0.133(-56.5)	1.99
$\beta_{TransferWaitingTime}$	-0.083(-24.5)	1.24	-0.077 (-11.1)	1.15
$\beta_{TransferWalkingTime}$	-0.320 (-46.4)	4.78	-0.099 (-10.3)	1.48
$\beta_{TransferBusBus}$	-1.070 (-20.6)	15.97	-0.771 (-13.1)	11.51
$\beta_{TransferBusMetro}$	-0.84 (-21.8)	12.54	-0.771 (-17.6)	11.51
$\beta_{TransferMetroBus}$	-0.92 (-6.7)	13.73	-0.995 (-7.0)	14.85
$\beta_{BusCrowding}$	-0.85 (-18.8)	12.69	-0.858 (-9.6)	12.8
$\beta_{PathSizeTerm}$	-0.073 (-2.6)		0.030~(0.5)	
	Obsv: 154,335		Obsv: 154,335	
	$\mathcal{L}(\hat{\beta}) = -161000.6$		$\mathcal{L}(\hat{\beta}) = -35978$	
	$\bar{\rho}^2 = 0.046$		$\bar{\rho}^2 = 0.083$	

Route choice problem Route choice strategies Data analysis coo Conclusions coo Conclusions Conclusions

$$P_p(l) = P(l|CL) * P_p(CL) + P(l|\overline{CL}) * P_p(\overline{CL})$$

$$P_p(\overline{CL}) = \frac{\exp\left(\beta_{\overline{CL}} + \beta_{q_p} * q_p\right)}{1 + \exp\left(\beta_{\overline{CL}} + \beta_{q_p} * q_p\right)}$$

$$q_p = \sum_{r=1}^{R_p} \sum_{l=1}^{L_r} \frac{\pi_{lrp}}{\sum_{r=1}^{R_p} L_r}$$

$$\pi_{lrp} = \frac{|ET_{lrp} - OT_{lrp}|}{max(ET_{lrp}, OT_{lrp})}$$

Latent class model

$$P_{p}(l) = P(l|CL) * P_{p}(CL) + P(l|\overline{CL}) * P_{p}(\overline{CL})$$

$$P(1|\overline{CL}) = \frac{\exp(V_{1})}{\exp(V_{1}) + \exp(V_{2}) + \exp(V_{3}) + \exp(V_{4})}$$

$$P(1|CL) = \frac{\exp(V_{1})}{\exp(V_{1}) + \exp(V_{2})} * \frac{forange}{forange + f_{yellow} + f_{gray}}$$

(Chiriqui and Robillard, 1975)

2 0

0 3

Latent class model

	Class 1: Elemental alternatives		Class 2: Aggregate alternatives	
Description	Estimated	Rates of	Estimated	Rates of
Description	coefficient	substitution	coefficient	$\operatorname{substitution}$
$\beta_{BusTravelTime}$	-0.090 (-41.2)	1	-0.058 (-19.4)	1
$\beta_{MetroTravelTime}$	-0.085(-29.5)	0.944	-0.068 (-17.8)	1.172
$\beta_{InitialWaitingTime}$	-0.095 (-53.3)	1.056	-0.095 (-22.5)	1.638
$\beta_{TransferWaitingTime}$	-0.067 (-12.9)	0.74	-0.093 (-7.5)	1.60
$\beta_{TransferWalkingTime}$	-0.484 (-37.9)	5.38	-0.037 (-2.2)	0.64
$\beta_{TransferBusBus}$	-0.850 (-10.7)	9.44	-0.994 (-8.5)	17.14
$\beta_{TransferBusMetro}$	-0.964 (-14.6)	10.71	-0.682 (-9.3)	11.76
$\beta_{TransferMetroBus}$	-2.005(-6.7)	22.28	-0.479 (-1.9)	8.26
$\beta_{BusCrowding}$	-1.410 (-20.5)	15.67	-0.299 (-2)	5.16
$\beta_{PathSizeTerm}$	-0.374 (-8.0)		0.323(3.4)	
$\beta_{\overline{CL}}$		-3.329 (-11.2)		
eta_{q_p}		10.571 (-12.14)		
N°Observations:		154,335		
$\mathcal{L}(\hat{eta})$		-160311.9		
$\bar{ ho}^2$		0.029		

Comparison of models

First Preference Recovery (FPR): proportion of the cases in which the model assigns the maximum probability to the chosen alternative (Ortúzar, J. de D., 1982).
Expected recovery (ER): Probability average of the chosen alternative (Ortúzar, J. de D., 1982).

Model	FPR	ER
Path Size Logit (elemental alternatives)	0.465	0.464
Path Size Logit (aggregate alternatives)	0.459	0.468
Latent class	0.468	0.471

Route choice problem	Route choice strategies 0000	Data analysis 000	Route choice modeling 000000€0	Conclusions
Hyperpaths				
Example				
	Hyperpath, 18 paths	O Hyperpath with tr paths	ansfer penalization, 4	
	O + M + U D Hyperpath with waiting time penalization 4 paths	n, Hyperpath with tra penalization, 5 path	nsfer and waiting time	

Hyperpaths

Indicator	N°Trips	hyperpath	hyperpath T	hyperpath WT	hyperpath T-WT
ER	776	0.223	0.310	0.224	0.329
FPR	776	0.294	0.320	0.294	0.351

T: transfer penalty, WT: waiting time penalty, T-WT: transfer and waiting time penalty

Route choice problem	Route choice strategies 0000	Data analysis 000	Route choice modeling 00000000	Conclusions
Conclusions				

Conclusions

- Smart card data allows to study passenger behaviour and estimate route choice models
- There are two groups of passengers: (1) elemental alternatives and (2) aggregate alternatives
- Metro travel time and waiting time is more burdensome for individuals in group (2).
- Walking time is more burdensome for individuals in group (1).
- It is necessary to penalize waiting time and transfer time to construct the optimal hyperpath